WebGL BioCrowds

Austin Eng

http://www.sciencedirect.com/science/article/pii/S0097849311001713

http://www.sciencedirect.com/science/article/pii/S0097849311001713
http://www.sciencedirect.com/science/article/pii/S0097849311001713

How it Works

*

Scatter Markers .

Gather Nearest Points .

Accumulate Marker Influences .

Accumulate Marker Influences .

Compute Weig

weight(m;, G)
=m; X :
>, weight(my;,)

nted Average of Marker Influences,

[] - 4.' ..

Compute Weig

weight(m;, G)
=m; X :
>, weight(my;,)

nted Average of Marker Influences,

Evaluates at < 30fps

https://www.youtube.com/watch?v=ayqgTsijGkf0

http://www.youtube.com/watch?v=aygTsijGkf0
https://www.youtube.com/watch?v=aygTsijGkf0
https://www.youtube.com/watch?v=aygTsijGkf0

BioCrowds in WebGL Shaders

e Pack agent data into image textures

o Position
o Goal
o ID

e Eliminate nearest-neighbor search
e Don’t use markers

No Markers?

e Treat each pixel as an implicit
marker
e Do we lose random

behavior?

o Not really. A noise texture can
be easily added to perturb
weights

Computing Voronoi in a Shader

e Instance each agent as a uniquely
colored vertical cone
e Other methods:

o Jump Flooding - constant time regardless of the
number of agents

http://nullprogram.com/blog/2014/06/01/

http://nullprogram.com/blog/2014/06/01/
http://nullprogram.com/blog/2014/06/01/

Refined Voronoi Diagram

Agents have non-zero radius. Shrink
voronoi cells to avoid interpenetration
Run a shader that sets the pixel color to
WHITE if there are at least two different
colors within radius r

Computing Agent Velocity

e Check the color of the current fragment
and look up the position and goal of the
respective agent

e Write the resulting weight to a texture

e [or each agent, accumulate marker
influences and write out the computed
velocity

Additional Features

Nearest-agent search for chasing behavior

Proximity field computation for avoidance behavior

Procedural noise fields for random motion

Arbitrary texture-driven “comfort” regions to guide agents away/towards
regions

Improvements (now that I've taken GPU)

e Investigate Jump Flooding for Voronoi computation
o Simultaneously compute distance-to-marker

e Keep all data on the GPU
o The current implementation looks up agent velocities in a texture, updates positions on the
CPU, and then copies position data back to a texture
o Store positions and velocities only in a texture
o Read from agent data texture to determine locations to draw agents

e Summed Area Tables for blur / voronoi refine

