
Dynamics
Adam Mally
CIS 700-006 Spring 2017
University of Pennsylvania

1



Advanced Character Physics

● Much of these slides’ content is based on 
the paper “Advanced Character Physics” by 
Thomas Jakobsen

● Discusses algorithms developed for IO 
Interactive’s game “Hitman: Codename 47”
○ Released in November of 2000!
○ Ragdoll physics
○ Cloth sim
○ Rigid body collisions

https://web.archive.org/web/20070610223835/http://www.teknikus.dk/tj/gdc2001.htm


Particle Systems

● The basis for most physics simulations is the 
particle system

● Easy to compute the motion of simple 
points in space

● A fun demonstration

http://www.iamnop.com/particles/
http://www.iamnop.com/particles/


Particle Systems: Euler integration

● Particles usually have three core attributes
○ Position
○ Velocity
○ Acceleration

● We use a repeating update function to 
simulate the motion of our particles:
p′ = p + v·Δt
v′ = v + a·Δt

● The equations above are simple Euler 
integration

http://codeflow.org/entries/2010/aug/28/integration-by-example-euler-vs-verlet-vs-runge-kutta/
http://codeflow.org/entries/2010/aug/28/integration-by-example-euler-vs-verlet-vs-runge-kutta/
http://codeflow.org/entries/2010/aug/28/integration-by-example-euler-vs-verlet-vs-runge-kutta/


Particle Systems: Verlet integration

● Euler integration is rather unstable when 
our time step is too large

● What if we tried Verlet integration?
○ Velocity is implicit since we store our previous 

position p*

p′ = 2p - p* + a·Δt2

p* = p

● More difficult for position and velocity to 
become desynchronized



Particle Systems: Verlet integration

p′ = 2p - p* + a·Δt2

p* = p

● The logic behind this becomes clearer if we 
rewrite it slightly:

p′ = p + (p - p*) + a·Δt2

● The statement within the parentheses is an 
approximation of the particle’s current 
velocity, with the Δt already multiplied in



Particle Systems: Runge-Kutta 
Integration

● Pronounced (sort of) “roon-geh koot-tuh”
○ They’re German last names
○ We’re not disassembling a ladder

● A method that can be used to numerically 
solve differential equations, provided we 
can define our equation in the form:
y′ = f(t, y)
y(t

0
) = y

0



Particle Systems: Runge-Kutta 
Integration

● A bit more complex to write out than Verlet or Euler integration, but is 
numerically stable for larger time steps
○ Useful if you want to simulate something in real time

y
n+1

 = y
n
 + h/6(k

1
 + 2k

2
 + 2k

3
 + k

4
)

k
1
 = f(t

n
, y

n
)

k
2
 = f(t

n
 + h/2, y

n
 + k

1
·h/2)

k
3
 = f(t

n
 + h/2, y

n
 + k

2
·h/2)

k
4
 = f(t

n
 + h/2, y

n
 + k

3
·h)

● h is our time step
● We’re evaluating the slope of our function at four points along our time 

interval: k1 is essential Euler integration, k2 and k3 are midpoint slopes, 
and k4 is the slope at the end of the interval



Handling collisions

● We have methods for moving our particles 
around in a vacuum

● How can we make particles interact with 
everything else in the scene?
○ Let’s not worry about particle-particle interaction 

just yet



Handling collisions

● We just project our particles back out of 
the colliding objects

● Translate them along the normal vector of 
the surface through which they moved

● What will be the effective motion of our 
particles when they collide with surfaces?
○ Euler integration case?
○ Verlet integration case?



Handling collisions

● We just project our particles back out of 
the colliding objects

● Translate them along the normal vector of 
the surface through which they moved

● What will be the effective motion of our 
particles when they collide with surfaces?
○ Euler integration case?
○ Verlet integration case?

● They’ll slide along the surfaces they hit, 
generally



Handling collisions: Example

● What if we want to force our particles to 
stay inside a 1000x1000 box?

● How might we code this?



Handling collisions: Example

● What if we want to force our particles to 
stay inside a 10003 box?

● How might we code this?
for(Particle p : particles) 

p = min(max(p, vec3(0)), vec3(1000))



Particle Constraints

● What if we force certain particles to stay 
within certain distances of one another?

● Let’s say we have two particles, and we 
want them to always remain 100 units away 
from each other
○ |p

1
 - p

2
| = 100

● If we integrate as before, it’s likely that the 
particles will soon break our constraint

● How do we fix this?



Particle Constraints

● We just move both particles closer if 
they’re too far away, and push them away 
if they’re too close



Particle Constraints

● The end result is as though we’ve attached 
a spring with infinite stiffness to the 
particle pair
○ Visually, the particles are *always* 100 units away
○ We fix their positions between frames

● But what if we want to impose additional 
constraints on our particles?
○ Let’s say they both have to fit inside a box with 

side lengths at least 100 units long
● We may repeatedly invalidate one 

constraint, then the other



Particle Constraints: Relaxation

● Let’s just repeatedly solve for our 
constraints until they are both satisfied

while(!c1.satisfied() && !c2.satisfied()) {

//Force particles to be 100 units away

//Force particles to fit in the box

}

● Seems naïve, but it will converge to the 
desired result

● Known as Jacobi iteration, or just 
“relaxation”



Particle Constraints: Relaxation

● Can improve relaxation by making it 
adaptive based on the amount of state 
change applied by the previous loop of 
relaxation

● Can change to a FOR loop to stop it early to 
avoid long or infinite iteration
○ May not be exactly physically correct, but should 

be close enough
● What happens if we make our springs less 

stiff?



Cloth Simulation: Springs

● Let’s say we have a collection of particles 
where each particle is attached to at least 
two others via springs

● We relax every particle each frame
○ As it turns out, we only need to perform one 

iteration in relaxation
● Hence, our algorithm becomes O(n), which 

is great for real time purposes



Cloth Simulation: Springs

● Let’s discuss how to represent springs in 
code

● We need some sort of constraint structure:
struct Constraint {

Particle *p1, *p2;

float restLength;

};



Cloth Simulation: Springs

● We also need to write the code that applies 
our spring constraints to the particles

● Given a constraint c between two particles:
Particle& p1 = *(c.p1); Particle& p2 = *(c.p2);

vec3 diff = p2 - p1;

float dist = sqrt(diff.x^2 + diff.y^2 + diff.z^2); // Costly!

float diffNorm = (dist - c.restLength) / dist;

p1 += diff * 0.5 * diffNorm;

p2 -= diff * 0.5 * diffNorm;

● We use this code on all constraints for N 
iterations



Cloth Simulation: Springs

● We can handle particles of nonuniform mass 
as well

Particle& p1 = *(c.p1); Particle& p2 = *(c.p2);

vec3 diff = p2 - p1;

float dist = sqrt(diff.x^2 + diff.y^2 + diff.z^2); // Costly!

float diffNorm = (dist - c.restLength) /

(dist * (1/p1.mass + 1/p2.mass));

p1 += diff * 1/p1.mass * diffNorm;

p2 -= diff * 1/p2.mass * diffNorm;



Rigid Bodies

● We can represent rigid bodies as collections 
of particles constrained by infinitely stiff 
springs

● This is fine as long as the world is composed 
of convex objects

● We have to handle concave shapes specially



Rigid Bodies

● We’re going to hand wave much of this part now 
because it is hard! Yay!

● Say we have a line that intersects a concave scene
● We need to know how far it sticks into the collider
● If we know this distance as well as the shortest path to 

make the line leave the collision, we can translate 
both endpoints to satisfy our collision constraints



Miscellaneous particle concepts

● Joints holding together rigid bodies
○ A pin joint is a single particle that is shared by two 

rigid bodies
○ A hinge joint is a pair of particles that are shared 

by two rigid bodies



Miscellaneous particle concepts

● How might we simulate an entire human 
body using particles and constraints?



Miscellaneous particle concepts

● How might we simulate an entire human 
body using particles and constraints?



Miscellaneous particle concepts

● How can we determine the strength of 
friction that should be applied to an object 
colliding with a surface?



Miscellaneous particle concepts

● How can we determine the strength of 
friction that should be applied to an object 
colliding with a surface?


