
IMPLICIT SURFACES
Representing and rendering complex shapes in 3D

University of Pennsylvania - CIS 700 Procedural Graphics
Rachel Hwang

REPRESENTING SURFACES

• There are multiple ways to represent surfaces

• We can manually specify the location of some vertices and interpolate between them.

• We can also come up with a function that describes the surface of an object relative to
the objects center position. Demo demo - there are tons of cool examples out there!

Jeff H
ube (source)

2

https://www.shadertoy.com/view/Mtc3RX
https://www.shadertoy.com/view/XlfGzH
https://www.jeffhube.com/images/screenshots/metaballs_1.jpg

SIGNED DISTANCE FUNCTIONS
• One way to represent a surface is functionally determining where we are relative to an object’s surface

• Signed distance functions (SDFs) take an input point and return shortest distance to the surface of a shape

• Zero means we’re on the surface of the object

• A positive number means we’re outside the object

• A negative number means we’re inside the object

• Ex. sphere:

• Compare length(vector to sphere center) to radius

3

+ Positive +

- Negative -

Signed Distance

Zero

RAY MARCHING

REVIEW: RAY TRACING
• So, how do we render geometry modeled with SDFs?

• Ray marching! An algorithm very similar to ray tracing.

• Quick ray tracing review:

• Cast rays through every cell of a grid (corresponding to pixels)

• For each ray, test for intersection with each piece of geometry

• Transform ray into model space

• Plug ray equation into geometry equation, solve for t (intersection distance)

5

cast rays
from camera How far away is intersection point?

RAY MARCHING
• With SDFs, we can’t just conveniently plug in our ray equation. But, we can essentially guess and check!

• However, we know zero or negative distance from object means we’re on/inside a surface — an intersection!

• The ray marching algorithm:

• Cast rays through every cell of a grid (corresponding to pixels)

• For each ray, using some small t value, compute a point p = ray_origin + ray_direction * t

• Plug point into scene SDF. If distance is zero or negative, intersection!

• If no intersection, take another small step forward along the ray, repeat till some max distance

6

cast rays
from camera No. Distance is positive. Try again.

Intersection?!

RAY MARCHING
• With SDFs, we can’t just conveniently plug in our ray equation. But, we can essentially guess and check!

• However, we know zero or negative distance from object means we’re on/inside a surface — an intersection!

• The ray marching algorithm:

• Cast rays through every cell of a grid (corresponding to pixels)

• For each ray, using some small t value, compute a point p = ray_origin + ray_direction * t

• Plug point into scene SDF. If distance is zero or negative, intersection!

• If no intersection, take another small step forward along the ray, repeat till some max distance

7

cast rays
from camera No. Distance is positive. Try again.

Intersection?!

RAY MARCHING
• With SDFs, we can’t just conveniently plug in our ray equation. But, we can essentially guess and check!

• However, we know zero or negative distance from object means we’re on/inside a surface — an intersection!

• The ray marching algorithm:

• Cast rays through every cell of a grid (corresponding to pixels)

• For each ray, using some small t value, compute a point p = ray_origin + ray_direction * t

• Plug point into scene SDF. If distance is zero or negative, intersection!

• If no intersection, take another small step forward along the ray, repeat till some max distance

8

cast rays
from camera No. Distance is positive. Try again.

Intersection?!

RAY MARCHING
• With SDFs, we can’t just conveniently plug in our ray equation. But, we can essentially guess and check!

• However, we know zero or negative distance from object means we’re on/inside a surface — an intersection!

• The ray marching algorithm:

• Cast rays through every cell of a grid (corresponding to pixels)

• For each ray, using some small t value, compute a point p = ray_origin + ray_direction * t

• Plug point into scene SDF. If distance is zero or negative, intersection!

• If no intersection, take another small step forward along the ray, repeat till some max distance.

9

cast rays
from camera No. Distance is positive. Try again.

Intersection?!

RAY MARCHING
• With SDFs, we can’t just conveniently plug in our ray equation. But, we can essentially guess and check!

• However, we know zero or negative distance from object means we’re on/inside a surface — an intersection!

• The ray marching algorithm:

• Cast rays through every cell of a grid (corresponding to pixels)

• For each ray, using some small t value, compute a point p = ray_origin + ray_direction * t

• Plug point into scene SDF. If distance is zero or negative, intersection!

• If no intersection, take another small step forward along the ray, repeat till some max distance.

10

cast rays
from camera Yes! Distance <= 0

Intersection?!

SPHERE TRACING
• We could always just step by the same small value

• But, we can do better! Save some checks by making step size dynamic

• Since at every step, we’re getting a distance value, rather than take a fixed step
size, step the maximum “safe” distance, ie current distance from scene SDF.

11

G
PU

 gem
s (source)

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter08.html

BASIC IMPLEMENTATION

12

Jam
ie W

ong (source)

In glsl, here’s the heart of the ray marching algorithm

http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

APPROXIMATE NORMALS

13

Jam
ie W

ong (source)

• The intersection point is great, but for most shading, we also need normals.

• What do we have to work with? Well, an SDF returns a range of values spanning
negative to positive. Zero for a surface point.

• Idea: For a surface point, the direction that will move your SDF value from negative to
positive fastest is the vector orthogonal to the surface. In other words, the normal!

• This is a concept from calculus: the gradient

• The gradient points in the direction of the greatest rate of increase of the function, and
its magnitude is the slope of the graph in that direction

http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

APPROXIMATE NORMALS

14

• Fortunately, we don’t even have to calculate the gradient, we can approximate!

• To get the derivative value at some point p, we can sample neighboring points and take their
difference to approximate slope.

• Do for 3 dimensions, each component of our output vector 3, to get the slope in each dimension.

• So for some 1D SDF….

APPROXIMATE NORMALS

15

Jam
ie W

ong (source)

Implementation looks like this. Remember to normalize!!!!

http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

SIGNED DISTANCE FUNCTIONS
as usual, many credits to IQ

MODELING WITH SDFS

17

• Given a basic vocabulary of SDF shapes and the ability to combine
them, you can make a wide variety of shapes.

• Constructive Solid Geometry: use boolean operations to make
complex shapes.

Zottie (source)

https://en.wikipedia.org/wiki/Constructive_solid_geometry#/media/File:Csg_tree.png

BASIC SDFS

18

• SDFs are a clever set of
geometry problems.

• Basic SDFs assume geometry
is positioned at the origin.

• Many primitive shapes to
choose from!

• See here for more.

IQ
 (source)

http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

TRANSFORMING SDFS

19

• For SDF rotation or translation, we can simply apply the inverse transformation to our point

• This works for the same reason we can apply the inverse model matrix to a ray in ray tracing —
we’re transforming our point into a space where the geometry is untransformed.

• Think of it like this: it’s simplest to operate on platonic geometry. We make transformed geometry
untransformed by multiplying with the inverse transform. But to keep our point operation
equivalent, we have to transform the point by the same amount — the inverse transform!

Equivalent,
for SDFs

Geometry transformed by M
& original point

Point transformed by inverse M
& untransformed geometry

TRANSFORMING SDFS

20

• Use a mod function to
always reduce distance to
nearest primitive, thus
repeating.

• Transform primitives by
actually transforming point
with the inverse transform

• Scaling is like other
transforms, except it
doesn’t preserve distance,
so the return value must be
scaled.

• Primitive = any SDF
IQ (source)

http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

CONSTRUCTIVE SOLID GEOMETRY

21

• How to combine models represented with SDFs?

• Well, this just means you have two SDFs to consider.

• However, as with most rendering problems, we only
care about the nearest intersection point, because
geometry behind is occluded.

• The solution is simple, compute each SDF results, then
just return the nearest distance of two SDFs!

IQ (source)

Union

http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

CONSTRUCTIVE SOLID GEOMETRY

22

• How about the intersection of two objects?

• Well, you only want to consider a surface if its within
both of the objects

• So we can ignore the first intersection, and keep going
until we hit the second object — if there’s only one
intersection, we’re only intersecting with one object!

• This operation is taking the max of the two distances.
IQ (source)

Intersection

http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

CONSTRUCTIVE SOLID GEOMETRY

23

• How to model a shape that is one shape minus another? Say
A - B.

• Well, this is equivalent to taking the intersection of A and the
inverse of B, meaning we can treat the outside of B like the
inside, and vice versa.

• Simple to take the inverse of B, just negate!

• Since positive means outside and negative means inside,
flipping the sign with flip inside/outside.

IQ (source)

Subtraction

http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

BLENDING SDFS

24

• Issue: our union produces a sharp discontinuity as we move from one surface to another

• Solution: use a smooth_min function instead of min. No discontinuity in derivatives!
IQ

 (source)

Vinicius Santos (source)

http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://homepages.dcc.ufmg.br/~vgs/blog/smin/

METABALLS

25

• Common demo scene effect consisting of organic-looking balls that blend
together when they’re close together

• Implemented using isosurfaces, another type of implicit surface

• Like SDFs, represent a surface as points of constant value within a volume.

Clicktorelease (source)

https://www.clicktorelease.com/code/bumpy-metaballs/
https://www.clicktorelease.com/code/bumpy-metaballs/

METABALLS

26

• So with the SDFs we’ve been discussing, we would just check whether we’re inside the surface to render.

• With metaballs, we can instead model each ball as having an influence field. We draw a surface at points
where the total influence (from all the balls) are over some threshold value.

• Let’s explain the 2D case (3D is the same, conceptually)

• Here’s the formula for all points within a sphere of radius r, centered at (x0, y0)

• We can rearrange the function to look like this:

METABALLS

27

• Plugging in the appropriate values, we know that if the result of the left hand side is greater than or
equal to 1, we’re inside the surface. Outside the surface, we just have smaller values that falloff,
decreasing slowly (visualized below as light).

• One way to model a surface between nearby balls is just to sum the influence from all of them at
each point. If the total influence > 1, we’re inside the metaball surface.

• Note: this is only one metaball equation. So long as we have a falloff function as distance from
center increases (> 1 somewhere!), we can use it.

• This particular function is modeled off of formula for calculating the strength of an electrical field

gam
edev.net (source)

http://gamedev.net
https://www.gamedev.net/resources/_/technical/graphics-programming-and-theory/exploring-metaballs-and-isosurfaces-in-2d-r2556

MARCHING CUBES

28

• So how do we render these? We could use ray-marching (although its pretty slow
because you can’t really use the sphere-tracing optimization).

• Let’s talk about another approach - Marching cubes!

• Supposedly the most-cited paper in graphics.

• Technique for not only rendering, but actually generating geometry mesh!

w
ikipedia (source)

https://en.wikipedia.org/wiki/Marching_cubes#/media/File:Marchingcubes-head.png

MARCHING SQUARES (2D)

29

• Rather than ray-marching, we discretize our space with a uniform grid, then sample the function at the
center of each cell.

• By summing up the influences with the metaball formula, we say cell is either inside or outside surface.

• But, this approach is messy because we’re just categorizing cells inside or outside. Unless we make our grid
super high resolution, it looks obviously blocky. Can we do better?

Jam
ie W

ong (source)

http://jamie-wong.com/2014/08/19/metaballs-and-marching-squares/

MARCHING SQUARES

30

• Yes we can! Rather than sampling at the center of the cells, we can sample at the
corners, and use that information to infer something about the geometry in each
cell based on the corners. [below, green points are inside the metaball surface].

Jam
ie W

ong (source)

http://jamie-wong.com/2014/08/19/metaballs-and-marching-squares/

MARCHING SQUARES

31

• If we know which corners are inside/outside, we know the surface geometry
must lie somewhere between the inside corners and the outside ones.

• Given four vertices, the number of possibilities is pretty manageable.

Jam
ie W

ong (source)

http://jamie-wong.com/2014/08/19/metaballs-and-marching-squares/

MARCHING SQUARES

32

• But why settle for “somewhere”?

• We have exact isovalues at each corner of our cells. We want to find some
intermediate value between them…. Smells like interpolation!

• Using interpolation, we can find exactly where the surface should be
positioned (where the meatball function is one) along each edge.

• We can use this to generate the exact lines that should represent our surface.

Jam
ie W

ong (source)

http://jamie-wong.com/2014/08/19/metaballs-and-marching-squares/

MARCHING SQUARES

33

• Crank up the resolution, and viola! You even have actually mesh vertices per grid cell!

• See here for animations of the whole process

• Works almost exactly the same in 3D, you just have cube cells with 8 vertices, and
there are way more possible mesh configurations!

Jam
ie W

ong (source)

http://jamie-wong.com/2014/08/19/metaballs-and-marching-squares/
http://jamie-wong.com/2014/08/19/metaballs-and-marching-squares/

IN SUMMARY
• An alternate method for representing surfaces: Signed Distance

Function.

• SDFs return a point’s distance from an object’s surface. Zero
means on the surface. Positive is outside. Negative is inside.

• Building with a set of basic SDFs for primitive geometry, we can
transform and combine primitives to get many complex
shapes.

• We can render SDFs with ray marching, basically stepping along
a ray from the camera until we hit something or hit maximum.

34

REFERENCES
• Papers

• Marching Cubes

• Helpful articles

• IQs library of signed distances functions

• Review of ray tracing

• Great explanation of ray marching & SDF

• Metaballs and marching squares

• GPU Gems chapter on distance functions

• Smooth min explained

• Demo of many SDF operations

35

http://academy.cba.mit.edu/classes/scanning_printing/MarchingCubes.pdf
http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-tracing/how-does-it-work
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
http://jamie-wong.com/2014/08/19/metaballs-and-marching-squares/
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter08.html
http://homepages.dcc.ufmg.br/~vgs/blog/smin/
https://www.shadertoy.com/view/Xds3zN

ASSIGNMENT

• Model a mechanical device or interesting scene of your choosing using ray-marching
and constructive solid geometry with SDFs

• Alternatively, make metaballs with marching cubes. We have base code for both.

• See example here. (This one is marching cubes.)
36

Shader toy (source)

https://www.youtube.com/watch?v=RHQkDmv3K7g
https://www.shadertoy.com/view/XlfGzH

