[-SYSTEMS

generating complex recursive systems

(32JN03) , sopJ,,

University of Pennsylvania - CIS 700 Procedural Graphics
Rachel Hwang


http://spacecollective.org/erdos/7249/Lindenmayerspidrons

BESCRIBING COMPLEXHSS

drodd (source)

Assertion: we can produce
virtually anything procedurally.

Growth functions and noise will
oet us far, but not enough to
produce significant systemic/
structural variation.

Definitely possible! (demo from

fabulous TA Austin Eng)

S0 how do we describe
complex systems!


https://vimeo.com/154011974
https://vimeo.com/154011974
https://vimeo.com/154011974
http://www.drodd.com/html7/sunflower.html
http://www.thisiscolossal.com/wp-content/uploads/2016/11/mush-1.gif

BREAKING [T DOWN

» Bolls down to breaking complex
systems Into simple parts

* What are the basic components!
* In what context do they appear?

* Like programming! Or grammar

* eg this tree — essemiially/aEEes
collection of needles and
branches with regular patterning.

(320N03) 210707

» (Can generate fractal complexity!

3


http://www.2020site.org/trees/pine.html

(32JN0S) ueAlNG uo(

BU T REALLY

Remadncseor iraeil broceell


https://en.wikipedia.org/wiki/Romanesco_broccoli#/media/File:Fractal_Broccoli.jpg

FORMALIZING



[-SYSTEM GRAMMARS

String rewriting systems

variables : AB
constants : none

axiom : A
rules : (A — AB), (B = A)

which produces:

n=0:A

n=1:AB

n=2:ABA

n=23: ABAAB

n=4: ABAABABA

n=>5: ABAABABAABAAB

* |-systems consist of:

- An alphabet of symbols: our
components (note that symbols can
be abstract)

«  An axiom: initial configuration

- A grammar: rules that determine
what symbols appear in what
contexts. Rules have

* Preconditions

e Postconditions



GRAPHICAL INTERPRETATION

We can interpret symbols as rendering instructions

* F = draw a line,
moving forward

== [otate(50)

\\L-.

3

+ + = rotate(-30) \ y
i

N

f

* [ = save position 1 , . )
n= n= n= n=

2 ] = store p OS |t| on Fig. 5.3: Four rewrites of the bracketed L-system F — F[—F|F [+F|[F]

pcgbook (source)


http://pcgbook.com/wp-content/uploads/chapter05.pdf

BRANMMARS ARE POVVERFEHS

I2-segment curve

S'ierpin.ski curve

h." T
4‘:{2 e

\“%V“’

Rcn

Wolfram (source

Interactive demo here

box fractal

H
343‘“'% A
3@&5% 38

i

Peano curve

L1 T T

dragon curve

Hilbert curve

LR R R A B B S R u
AR R RSN Y

-
% Lo BB
 EE N ‘-O::I
1 4 vy e
ot b

Peano-Gosper

curve g,
w.ir'
M

H:lberl curve ll

bbbbbbb
. . .

-+ S
3.3 3 NUUpUNERIS: SRl
3B BRI 20 is g
L

Sterpinski

arrowhead



http://mathworld.wolfram.com/LindenmayerSystem.html
http://www.kevs3d.co.uk/dev/lsystems/

INJECTING VARIATION

So far, our systems have been deterministic, we can add variation in
several ways:

| ) Create multiple rules that apply in the same context with the
same precondition

S U6 A —> C,o00%)
2) Have an element of randomness In rule interpretation
eg. A = rotateX(noise(n))

For examplel



https://www.youtube.com/watch?v=TPJFozI-7hY

AN EXAMPER

ow do we generate a tree like this!




IMPLEMENTATION

Rough suggestion for the main parser function:

( iterations, grammar) {
0 i=0; i < iterations; ++i) {
for (symbol old_sym : axiom) ({

new sym = applyRandomRule(old sym, grammar);

replace(old sym, new sym, axiom);
}
}

return axiom;




IMPLEMENTATION

Rough suggestion for rule representation:

{

precondition;
<Postcondition> postconditions;

{
probability;
new symbol;




IMPLEMENTATION

Notes on the symbol representation:
* Symbols often represented as chars In a string

* However, constantly copying long strings per replacement,
s Inefficient

* We may also want to store additional information about

a symbol, eg. the Iteration 1t was added so we can apply a
scale

« For all these reasons, linked lists are a nice solution.



IN SUMMARY

* Like programming, we can decompose complex systems into small logical units.

* We can formalize this as a simple grammar composed of rules for replacing

symbols.

* We can add variation by giving rules probabllity, or adding random elements into

our rendering rules

- Symbols = {a,b,.... Z}

* Rules of format = {A — B, /5%}
« Overall, Isystem assets are composed of two separate elements
* The grammar

» The rendering interpretation



REFERENCES

¢ Jexts

» Algorithmic Botany, textbook treatment of |-systems

* Another text on grammars and Isystems

SR SIOldIRITSystem reference

« Demos

eI siermn sencrator

* Another | system generator



http://algorithmicbotany.org/papers/abop/abop-ch1.pdf
http://pcgbook.com/wp-content/uploads/chapter05.pdf
http://www.sidefx.com/docs/houdini10.0/nodes/sop/lsystem
http://nolandc.com/sandbox/fractals/
http://www.kevs3d.co.uk/dev/lsystems/

ASSIGNMENT

Create a linked-list structure to
represent an alphabet symbol

Create a rule format in which
to encode grammar

Create an Isystem parser to
process symbols using a
grammar

Design an original grammar

which generates plants with
leaves or flowers of some kind. Demo



https://vimeo.com/198216196

